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Abstract—Network administrators want to determine which 
services and applications are most frequently used, which and 
how many devices and operating systems (OSs) are used, and 
when and where the highest peak of network traffic is to 
overcome the massive traffic demand. However, it is hard to 
recognize the situation in large and complicated networks. It 
requires massive additional monitoring nodes or systems and 
large volumes of traffic data analysis. Moreover, in the case of 
using NAT or tethering, the number of IP addresses used does 
not coincide with the number of devices because IP addresses is 
shared with devices in the behind of NAT-boxes or tethering 
devices.  
In this paper, we propose a new passive OS fingerprinting 
method which requires analyzing only DNS traffic. The 
method utilizes characteristics on DNS queries that each OS 
sends DNS queries related to specific domains, and each OS 
sends these queries with specific patterns of time interval 
between them. The method can estimate the number of devices 
with each OS from the number of queries by utilizing the 
characteristics of the time interval patterns. The method 
considers the likelihood of irregular events that some queries 
are sent less than regular time intervals, and some other 
queries are sent more than regular time intervals. According to 
our examination on our intra-network, some results of our 
estimation method are close to the results of DHCP 
fingerprinting.  

Keywords-Passive OS fingerprinting; Traffic analysis 

I. INTRODUCTION 

In recent years, data traffic has increased explosively due 
to the increase in the number and use of smartphones. To 
overcome the massive traffic demand, network 
administrators must perceive the status of their networks to 
ensure stable network service. Network administrators want 
to determine which services and applications are most 
frequently used, which devices and operating systems (OSs) 
are used, and when and where the highest peak of network 
traffic is. In particular, the most important and useful factor 
is to recognize the trend in the distribution of operating 
systems in use in terms of network management. According 
to Ericson’s report [1], different OSs have different trends in 
traffic volume. Additionally, different OSs have different 
applications installed. However, it is hard to perceive the 
status since the network is more complicated due to the 
diverse access networks (wire (e.g. FTTH (Fiber To The 
Home), xDSL (Digital Subscriber Line)) or wireless 
networks e.g. cellular, WLAN (Wireless Local Area)), traffic 
off-loading from mobile networks to fixed ones (e.g. via 
WLAN (Wireless Local Area Network)), and tethering by 
smartphones or mobile routers.  

Previous works studied ways to infer network status. In 
[11,12], they profiled user activities or classified the traffic 
on the network. In [2,3], they studied ways to detect an OS 
(OS fingerprinting) by monitoring traffic on the network. For 
example, OS fingerprinting is realized by using 
characteristics in the TCP/IP header [2], fields in the DHCP 
packets [3], and the HTTP header. Some works took another 
approach to actively detect an OS by sending or injecting 
configured packets to the target hosts or TCP/IP sessions 
[4,6]. Another work used a hybrid approach [10] that 
combined passive approaches with active ones. However, 
these works are unrealistic for large, complicated networks 
in terms of storage and computational cost. These works, 
except for [3], force network administrators to deploy 
massive additional monitors or systems on their networks 
and to analyze large volumes of traffic data to profile all 
activities. The works utilizing DHCP packets [3] cannot 
extract additional information related to user activities. Some 
works of reducing the monitoring nodes for network 
management and monitoring are to adapt dynamic networks, 
such as virtual networks, the Internet, or sensor networks by 
selecting appropriate nodes [7,8,9]. However, these works 
also have the deployment issue; these works need to improve 
or replace existing network devices or nodes to add new 
functions. These works also require large volumes of data, 
making it difficult to extract information on network status in 
terms of not only the volume of traffic but also services and 
application trends. Furthermore, all previous works have 
difficulty in estimating the number of devices with each OS 
in the case that devices are located in the behind of NAT 
(Network Address Transform) boxes or tethering devices, or 
devices move across access networks by traffic off-loading 
from the cellular network to fixed one via WLAN, where a 
device is assigned with different IP addresses by access 
networks it uses, or a device shares an IP address with other 
devices.  

To overcome such a difficulty, we focus on DNS traffic 
as a tool to be aware of the situation on a network. Analyzing 
DNS traffic results in a substantial amount of useful 
information about the status of the network, such as popular 
services and applications among users and daily traffic trends. 
Furthermore, it allows us to presume upcoming traffic since 
a user’s device first sends a query to a DNS server to resolve 
the IP address of a service provider. Moreover, we argue that 
we can effectively realize awareness of the network status by 
simply monitoring DNS-related traffic without additional 
systems or monitoring points. Then, this is a suitable and 
realistic solution for large and complicated networks.  



In this paper, we propose a new passive OS 
fingerprinting method by analyzing DNS traffic. The method 
utilizes characteristics on DNS queries: each OS has specific 
queries for domains to which other OSs send no query, and 
each OS has characteristics on the time interval distribution 
in sending the OS-specific domain queries. The method can 
estimate the number of OSs from the number of specific 
DNS queries. In order to realize our method, we derive 
characteristics regarding DNS traffic by analyzing DNS 
queries from each OS. Our analysis shows that each OS has 
two important characteristics on DNS queries described 
above. We also devise a method for estimating the number of 
OSs from the number of queries by utilizing the 
characteristics. For the estimation, we derive an estimation 
equation which utilizes the characteristics of specific DNS 
queries and also considers the irregular time interval case 
that some queries are sent less than regular time intervals, 
and some other queries are sent more than regular time 
intervals. In this paper, we provide the results of our analysis 
against DNS queries from the Android OS and the 
characteristics of the queries. Furthermore, this paper shows 
the results of our examination on our intra-network for 
estimating the number of OSs by using our estimation. Some 
results show that our method is a close estimation of the 
results of DHCP fingerprinting.  

A. Contribution and Outline of this Paper 

In this paper, we propose a new passive OS 
fingerprinting method using DNS traffic. We demonstrate, 
for example in the case of the Android OS, characteristics for 
OS fingerprinting derived from DNS-related traffic analysis. 
We derive a method for estimating the number of OSs by 
using the characteristics and considering the likelihood of 
irregular events: sending queries much less than the regular 
time interval and sending queries much more frequently. We 
demonstrate the results of our examination of the estimation 
on our intra-network.  

The outline of this paper is as follows. We describe the 
works related to our study in Section II. We summarize our 
proposal for the estimation in Section III. We introduce the 
results of our DNS traffic analysis with the Android OS and 
the equation for estimating the number of OS devices in 
Section IV. We introduce our examination of our estimation 
by using DNS traffic on our intra-network in Section V, and 
conclude this paper in Section VI.  

II. RELATED WORKS 

There are some works of OS fingerprinting. In [2], 
Zalewski uses a passive approach by monitoring differences 
in the TCP/IP headers, TTL (Time To Live), and MSS 
(Maximum Segment Size) to distinguish OSs. In the HTTP 
headers, the User-Agent field has information about the web 
browsers as well as the OSs of the users. In [5], Shah tries to 
distinguish HTTP server software and the OS by using 
information included in the HTTP responses. However, these 
works are not feasible on large, complicated networks, since 
these works need to establish traffic monitoring equipment at 
all network borders and requires the filtering of usable 
information from high volumes of captured traffic data. 

Moreover, especially in [2], it does not work in the case of 
tethering. In this case, some fields in the TCP/IP headers are 
usually rewritten. In [3], Kollmann uses DHCP-related 
packets for passive OS fingerprinting. He uses the time 
difference between retransmission frames or DHCP fields, 
such as Secs. However, there is no information about the 
services or applications that users enjoy in the DHCP frames. 
So, an additional system is needed to gather information 
from another traffic analysis to that from DHCP frames.  

There are other works of active OS fingerprinting. In [6], 
Lyon uses the network scanning tool, Nmap. This tool has a 
remote OS fingerprinting function. Nmap sends probe 
packets to the target devices and monitors the response. The 
application then determines the OS of the target from the 
response packets. In [10], Gagnon takes a hybrid approach 
that combines the passive approaches with active approaches 
to increase the accuracy of OS fingerprinting. However, the 
method does not work when the target devices are located 
behind network devices, such as a firewall or NAT box. In 
such cases, the application is unable to send probe packets to 
the targets. Some works have been studied to overcome the 
NAT-like situations. In [13], Beverly used a passive 
approach to classify the traffic derived from NAT hosts with 
other hosts by using a naïve Bayesian classifier for the 
characteristic values in the TCP/IP header fields. In [4], 
Schulz enabled active OS fingerprinting in the tethering 
environment by injecting ICMP (Internet Control Message 
Protocol) error packets into the target client’s TCP session. 
However, this approach required an additional system to 
monitor all clients networking and, especially in [4], to inject 
ICMP packets at the right time. Therefore, the approach is 
unfeasible with large, complicated networks.  

Other works were studied to profile user activities by 
analyzing traffic. In [11], Xu classified Internet backbone 
traffic into clusters (servers/services, heavy hitter hosts, 
scans/exploits) with source/destination IP addresses. This 
approach is unrealistic for large networks because of the 
need to analyze the volume of traffic data to profile all 
activities in terms of storage and computational cost. 
Furthermore, there is a problem with the deployment of 
monitors to obtain all traffic data on a large network. In [12], 
Zhang tried to infer online user activities (browsing, online 
game, video, etc.) by analyzing MAC-level traffic on a 
wireless LAN and extracting the feature of 
data/control/management frames (data rate, frame interval 
time, etc.). This approach specialized in wireless LAN traffic 
but had a monitor deployment issue.  

III. DESCRIPTION OF PROPOSED METHOD 

Figure 1 shows our assumption of the network 
environment for passive OS fingerprinting. There are some 
access networks (cellular, FTTH, etc.) on the whole network, 
and each device can connect to any access network. There is 
a (set of) DNS server on a core network. Whichever access 
network a device connects to, a device sends a query to the 
same DNS server. We also assume that there are some 
devices that connect to an access network through another 
device, such as tethering-enabled ones or NAT-boxes. This 
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interval less than 1,800 seconds (most of these queries send 
at less than 3 seconds interval) and 16.5% of queries at less 
than 5,400 seconds (in fact, these queries’ intervals take from 
3,600 to 4,000 seconds). Device 2 also takes intervals near 
82,800 seconds (from 81,000 to 82,800 seconds) at 6.1% of 
queries. This appears that if a previous query takes intervals 
near 3,600 seconds, the next interval is near 82,800 seconds 
in order to adjust the query time at the same time in a day.  

Through our analysis described above, we summarize 
characteristics on DNS queries for 
clients.android.google.com as follows: 

 After a query for the A record of 
clients.android.google.com, the Android OS sends a 
PTR query for an IP address, which is in response to 
an A record query at an interval of less than 200 
milliseconds.  

Figure 3. Query time interval (domain name: clients.android.google.com, days: 60) 

(a) Device 1 

(b) Device 2 
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Figure 2. DNS query evolved time (domain name: clients.android.google.com, days: 30) 
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 Android OS often sends queries for 
clients.android.google.com at the same time every 
day. However, the Android OS sometimes sends no 
query in a day (42.9% of Device 1 queries, 13.0% of 
Device 2 queries).  

 The Android OS sometimes sends queries for 
clients.android.google.com at different times from 
the regular time in a day. Some devices have a 
specific pattern for the different time (e.g. Device 2 
sends the queries at intervals near 3,600 seconds 
(16.5%) or less than 3 seconds (33.0%)).  

 
We analyze another query domain, *.pool.ntp.org. Figure 

4 shows query time for *.pool.ntp.org A record from the 

base time when the first query is evolved. In Figure 4, 
vertical axes between days are drawn at 14,400 seconds. 
According to Figure 5, queries are often evolved at time 
intervals of multiples of 14,400 seconds (4 hours). Figure 5 
shows frequency distribution of queries for *.pool.ntp.org. 
Most of queries are sent at the time intervals of near the 
multiples of 14,400 seconds, 78.0% of Device 1 queries and 
78.5% of Device 2 queries. Some queries take intervals less 
than 7,200 seconds, 8.7% of Device 1 and 9.3% of Device 2. 
These queries appear to be for the alignment of the timing of 
sending queries. Some queries take intervals over one day, 
2.9% of Device 1 queries and 2.3% of Device 2 queries. 
Through our analysis described above, we summarize 
characteristics of DNS queries for 
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Figure 5. Query time interval (domain name: *.pool.ntp.org, days: 60) 
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clients.android.google.com as follows: 
 The Android OS often sends queries for 

*.pool.ntp.org at multiples of 14,400 seconds. 
However, the Android OS sometimes sends queries 
over a day (2.9% of Device 1 queries, 2.3% of 
Device 2 queries).  

 The Android OS sometimes sends queries for 
*.pool.ntp.org at less than 7,200 seconds (8.7% of 
Device 1 queries, 9.3% of Device 2’ queries) for 
perhaps timing alignments.  

C. Estimating the number of OSs 

To estimate the number of OSs, we consider the 
characteristics described above: (A) regularly, query time 
intervals have a cyclic nature, (B) irregularly, some queries 
are sent less than regular time intervals, and (C) some other 
queries are sent more than regular time intervals. 
Furthermore, for estimating the number of OSs, we have to 
consider how to estimate the number of OSs using the data 
captured during the less than the regular cyclic time interval. 
This means that there are some OS devices that do not send 
queries during the captured time interval, and we estimate 
the number of such devices by using the captured data that 
includes no query sent from the devices. In this section, we 
first introduce how to estimate the number of OSs using the 
data captured during the less than regular cyclic time interval. 
Then, we introduce how to consider the irregular 
characteristics described above. For the purpose of the 
following explanation, Figure 6 is an example of the 
situation of the following explanations. Table II summarizes 
the notations we use in the following explanations.  

First, we introduce the estimation equation which 
utilizing the regular cyclic nature of queries (A). Let the 
cyclic interval time for a domain d be ௗܶ, and the interval 
time for capturing traffic data be ௤ܶሺ൏ ௗܶሻ. A probability 
,ௗ݌ ೜் that an OS device sends a query for domain d in the 
capture interval ௤ܶ satisfies ݌ௗ, ೜் ൌ ௤ܶ/ ௗܶ. Therefore, let the 

number of queries for domain d in the interval ௤ܶ be ௗܰ, ೜், if 
all queries are sent at the cyclic interval ௗܶ, the number of 
OSs ܱ ௜ܵ , ைܰௌ೔ , satisfies ைܰௌ೔ ∙ ,ௗ݌ ೜் ൌ ௗܰ, ೜் . So, ைܰௌ೔  can 
estimate by the following equation, 

 ைܰௌ೔ ൌ
ே೏,೅೜
௣೏,೅೜

ൌ ௗܰ, ೜்
்೏

೜்
	. 

For example, in Figure 6, the number of queries for 
domain d,	 ௗܰ, ೜் , is 3 (query ܳଵ,଴, ܳଵ,ଵ, ܳଵ,ଶ and ܳଶ,଴). If ௤ܶ 
satisfies ௤ܶ ൌ 1/2 ∙ ௗܶ , the number of OS devices is 
estimated that ைܰௌ೔ ൌ 3/ሺ1/2ሻ ൌ 6	. 

Then, we introduce how to consider the irregular 
characteristics (B). In the queries in the captured data during 
௤ܶ, there are the queries that are sent by the same OS device. 

So, we should remove such duplicated queries from the 
number ௗܰ, ೜்  before the estimation of ைܰௌ೔  by the equation 
(1).  

First, we consider the irregular characteristic (B) to the 
estimation equation (1). Let ௗܰ, ೜்

ଵ  be the number of OS 
devices that send only one query in the capture interval ௤ܶ, 

ௗܰ, ೜்
ଶ  be the number of OS devices that send more than one 

query in the capture interval ௤ܶ. Let ߤௗ
୐ be the mean of the 

number of queries sent by OS devices, which send more than 
one query in the capture interval ௤ܶ, in the capture interval ௤ܶ. 
The number of queries in the capture interval ௤ܶ , ௗܰ, ೜் , is 

denoted as ௗܰ, ೜் ൌ ௗܰ, ೜்
ଵ ൅ ሺߤௗ

୐ െ 1ሻ ∙ ௗܰ, ೜்
ଶ . ௗܰ, ೜்

ଶ  satisfies 

ௗܰ,்೏
ଶ ൌ ௗܰ,்೏

ଵ ∙ ,ௗ݌ ೜்
୐ , where ݌ௗ, ೜்

୐  is the probability that an 
OS device sends a query for domain d at less than the capture 
interval ௤ܶ . So, the number of devices that send only one 
query ௗܰ, ೜்

ଵ  is denoted as ௗܰ,்೏
ଵ ൌ ௗܰ, ೜்/ሺ1 ൅ ,ௗ݌ ೜்

୐ ሺߤௗ
୐ െ 1ሻሻ. 

Therefore, the equation (1) is revised as, 

Figure 6. An example of the estimation situation 

a query at less than 
capture interval 

a query over the 
cyclic interval 

device 1

device 2

capture interval 

TABLE II.  NOTATIONS 

ௗܶ Cyclic interval time for a domain d 

௤ܶ Interval time for capturing traffic data 

ௗܰ, ೜் The number of queries for domain d that are sent in the 
interval ௤ܶ 

ௗܰ, ೜்
ଵ  The number of OS devices that sends only one query for 

domain d during the interval ௤ܶ 

ௗܰ, ೜்
ଶ  The number of OS devices that sends more than one 

query for domain d during the interval ௤ܶ 

ௗߤ
୐ Mean of the number of queries sent by OS devices in 

the interval ௤ܶ, that send more than one query in the 
interval ௤ܶ 

,ௗ݌ ೜் Probability that a OS device sends queries for domain d 
in the interval ௤ܶ 

,ௗ݌ ೜்
୐  Probability that a OS device sends queries for domain d 

at less than the interval ௤ܶ 

ௗ,்೏݌
୓  Probability that a OS device sends queries for domain d 

over the cyclic interval ௗܶ 

ைܰௌ೔ The number of OS devices only that send at least one 
query in the cyclic interval ௗܶ 

ைܰௌ೔
୅  The number of all OS devices 



 ைܰௌ೔ ൌ
ே೏,೅೜
భ

௣೏,೅೜
ൌ

ே೏,೅೜
ሺ ೜்/்೏ሻሺଵା௣೏,೅೜

ై ሺఓ೏
ైିଵሻሻ

	. (2)

In Figure 6, the probability that an OS device sends a 
query at less than the capture interval ௤ܶ, ݌ௗ, ೜்

୐ , is 2/6 ൌ 1/3 
derived from Device 1 pattern (queries that sent at less than 
the interval ௤ܶ is ܳଵ,ଵ and ܳଵ,ଶ). The mean of the number of 
queries that is sent in the capture interval ௤ܶ, ߤௗ

୐, is 3 derived 
from the Device 1 pattern. So, the number of OS devices is 
estimated as ைܰௌ೔ ൌ

ଷ

ሺଵ/ଶሻሺଵାଵ/ଷ∙ሺଷିଵሻሻ
ൌ 18/5.  

Then, we consider the irregular characteristic (C) to the 
equation (2). ைܰௌ೔ in the equation (2) denotes the number of 
OS devices that send at least one query in the cyclic time 
interval ௗܶ. However, according to characteristic (C), there 
are some OS devices that send no query over the cyclic time 
interval. So, let ݌ௗ,்೏

୓  be the probability that an OS device 
sends a query over the cyclic time interval ௗܶ , and the 
estimated number of all OS devices ைܰௌ೔

୅  is denoted as 

follows, ைܰௌ೔
୅ ൌ ைܰௌ೔/ሺ1 െ ௗ,்೏݌

୓ ሻ . Therefore, the equation 
(2) is revised as, 

ைܰௌ೔
୅ ൌ

ைܰௌ೔

1 െ ௗ,்೏݌
୓ ൌ

ௗܰ, ೜்
ଵ

,ௗ݌ ೜்൫1 െ ௗ,்೏݌
୓ ൯

 

 ൌ
ே೏,೅೜

ሺ ೜்/்೏ሻሺଵା௣೏,೅೜,
ై ሺఓ೏

ైିଵሻሻሺଵି௣೏,೅೏
ో ሻ

	 

In Figure 6, the probability that an OS device sends a 
query over the cyclic time interval ௗܶ, ݌ௗ,்೏

୓ , is 1/6 derived 
from Device 1 pattern (queries that sent over the cyclic time 
interval ௗܶ  is ܳଵ,ହ ). So, the number of OS devices is 

estimated as ைܰௌ೔
୅ ൌ ଷ

ሺଵ/ଶሻሺଵାଵ/ଷ∙ሺଷିଵሻሻሺଵିଵ/଺ሻ
ൌ 108/25.  

V. EXAMINATION IN OUT INTRA-NETWORK 

We examine our estimation equation (3) by estimating 
the number of Android OSs on our intra-network. We 
capture the DNS traffic data and DHCP-related traffic in our 
intra-network. DHCP traffic is used for DHCP fingerprinting 
[3] to compare the estimation result by using DNS traffic. In 
this examination, we use two DNS queries that are for 
android.clients.google.com and *.pool.ntp.org. We derive 
each parameter in the equation (3) from our DNS traffic 
analysis described in Section III-B. Table III summarizes the 
parameters for the equation (3) related to queries for 
android.clients.google.com and *.pool.ntp.org, respectively.  

Figure 7 shows the difference in the estimation results by 
using queries for clients.android.google.com with the 
captured time interval ௤ܶ  and parameters from device 1 
analysis and device 2. We derive a number of queries, ௗܰ, ೜்  
in the equation (3) from the captured DNS traffic data during 
one day. Each value of ௗܰ, ೜்  related to the captured time 
interval ௤ܶ  is shown in Table IV. Each value of ௗܰ, ೜்  is 
derived by calculating an average of the number of queries in 
each interval where the start time is shifted hour by hour. 
The dashed line in Figure 7 indicates the result of the DHCP 
fingerprinting, which estimates that 8 OS devices exist in the 
network. According to Figure 7, the results from the Device 
2 parameters are closer to the DHCP fingerprinting result. 
Therefore, Device 2 parameters are more suitable for the 
characteristics of Android OS queries. Device 1 parameters 
derive worse estimation results since the probability that an 
OS device sends a query over the cyclic time interval ݌ௗ,்೏

୓  is 
much higher than Device 2 due to device specific 
characteristics or irregularly factors. Figure 7 also indicates 
the feature that the longer the captured time interval ௤ܶ, the 
closer the estimation results are to the DHCP fingerprinting 
result.  

Figure 8 shows the estimation results by using queries for 
*.pool.ntp.org. Each value of ௗܰ, ೜்  is shown in Table V. 
According to Figure 8, both estimation numbers of OS 
devices are less than the DHCP fingerprinting result. It is 
because some Android OS devices send no query for 
*.pool.ntp.org by default, and we presume that there are 
some Android OS devices that are set to choose another 
domain or method for time synchronization in the network. 
Our extra observation shows that 2 devices of 5 devices send 
no query for that domain. If we consider the rate of such 
devices to the estimation, the results of the estimation 
become closer to the DHCP result.  

TABLE III. PARAMETERS FOR THE EQUATION (3)  

(A) DOMAIN: ANDROID.CLIENTS.GOOGLE.COM 

 Device 1 Device 2

ௗܶ ௤ܶ ݌ௗ, ೜்
୐ ௗ,்೏݌ 

୓ ௗߤ 
୐ ݌ௗ, ೜்

୐ ௗ,்೏݌ 
୓ ௗߤ

୐

86400 

86400 0.357 0.429 2.00 0.783 0.130 2.86
43200 0.262 0.429 2.00 0.626 0.130 2.34 
21600 0.143 0.429 2.00 0.539 0.130 2.05 
10800 0.095 0.429 2.00 0.513 0.130 2.05 
5400 0.071 0.429 2.00 0.348 0.130 2.00 

 
(B) DOMAIN: *.POOL.NTP.ORG 

 Device 1 Device 2

ௗܶ ௤ܶ ݌ௗ, ೜்
୐ ௗ,்೏݌ 

୓ ௗߤ
୐ ݌ௗ, ೜்

୐ ௗ,்೏݌ 
୓ ௗߤ

୐

14400 
14400 0.104 0.549 2.00 0.116 0.581 2.00
7200 0.087 0.549 2.00 0.076 0.581 2.00
3600 0.046 0.549 2.00 0.052 0.581 2.00

 

TABLE IV. VALUES OF THE NUMBER OF QUERIES IN EACH CAPTURED 
TIME INTERVAL 

(DOMAIN: ANDROID.CLIENTS.GOOGLE.COM) 

௤ܶ 86400 43200 21600 10800 5400

ௗܰ, ೜் 16.0 8.58 4.61 2.29 1.14

 

TABLE V. VALUES OF THE NUMBER OF QUERIES IN EACH CAPTURED 
TIME INTERVAL 

(DOMAIN: *.POOL.NTP.ORG) 

௤ܶ 14400 7200 3600 

ௗܰ, ೜் 1.50 0.73 0.35 



VI. CONCLUSION 

In this paper, we study ways to passive OS fingerprinting 
from the analysis of DNS traffic and we derive a method to 
estimate the number of OSs in the network.  

We first reveal characteristics to determine OSs from 
DNS traffic by analyzing DNS queries from each OS. Each 
OS, especially the Android OS, has useful characteristics for 
the estimation, each OS has specific domains to which other 
OSs send no query, and each OS has characteristic time 
interval distributions in sending the OS-specific domain 
queries. Our analysis also shows that the OS-specific domain 
queries are sometimes sent irregular time intervals; some 
queries are sent less than regular time intervals, and some 
other queries are sent more than regular time intervals.  

We then propose a method for estimating the number of 
OSs from a number of specific DNS queries in a captured 
DNS traffic data during a time interval. We derive an 
equation for estimating the number of OSs, which considers 
not only the cyclic nature of queries for specific domains but 
also the irregular time interval cases described above.  

Finally, we provide the results of our examination on our 

intra-network. Some results show our estimation method can 
result in close estimation number of OSs to the results of 
DHCP fingerprinting. The result indicates that the accuracy 
of our estimation method depends on the parameters for the 
equation. In the case of using DNS queries to 
clients.android.google.com, we can obtain closer estimation 
number of OSs by using the parameters which are derived 
from our DNS traffic analysis regarding Device 2 than ones 
regarding Device 1. Furthermore, the results also reveal the 
feature that the shorter the data captured time interval, the 
worse the precision of the estimation. Additional methods 
should be studied to raise the precision of the estimation 
from captured data with shorter time intervals and to derive 
the adequate parameters that correctly describe OS 
characteristics.  
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Figure 7. Estimation results with queries for 
clients.android.google.com 

Figure 8. Estimation results with queries for *.pool.ntp.org 
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