Passive OS Fingerprinting by DNS Traffic Analysis

Takashi MATSUNAKA', Akira YAMADA* and Ayumu KUBOTA

"KDDI R&D Laboratories Inc.
Saitama, Japan
{ta-matsunaka, kubota} @kddilabs.jp

Abstract—Network administrators want to determine which
services and applications are most frequently used, which and
how many devices and operating systems (OSs) are used, and
when and where the highest peak of network traffic is to
overcome the massive traffic demand. However, it is hard to
recognize the situation in large and complicated networks. It
requires massive additional monitoring nodes or systems and
large volumes of traffic data analysis. Moreover, in the case of
using NAT or tethering, the number of IP addresses used does
not coincide with the number of devices because IP addresses is
shared with devices in the behind of NAT-boxes or tethering
devices.

In this paper, we propose a new passive OS fingerprinting
method which requires analyzing only DNS traffic. The
method utilizes characteristics on DNS queries that each OS
sends DNS queries related to specific domains, and each OS
sends these queries with specific patterns of time interval
between them. The method can estimate the number of devices
with each OS from the number of queries by utilizing the
characteristics of the time interval patterns. The method
considers the likelihood of irregular events that some queries
are sent less than regular time intervals, and some other
queries are sent more than regular time intervals. According to
our examination on our intra-network, some results of our
estimation method are close to the results of DHCP
fingerprinting.

Keywords-Passive OS fingerprinting; Traffic analysis

L INTRODUCTION

In recent years, data traffic has increased explosively due
to the increase in the number and use of smartphones. To
overcome the massive traffic demand, network
administrators must perceive the status of their networks to
ensure stable network service. Network administrators want
to determine which services and applications are most
frequently used, which devices and operating systems (OSs)
are used, and when and where the highest peak of network
traffic is. In particular, the most important and useful factor
is to recognize the trend in the distribution of operating
systems in use in terms of network management. According
to Ericson’s report [1], different OSs have different trends in
traffic volume. Additionally, different OSs have different
applications installed. However, it is hard to perceive the
status since the network is more complicated due to the
diverse access networks (wire (e.g. FTTH (Fiber To The
Home), xDSL (Digital Subscriber Line)) or wireless
networks e.g. cellular, WLAN (Wireless Local Area)), traffic
off-loading from mobile networks to fixed ones (e.g. via
WLAN (Wireless Local Area Network)), and tethering by
smartphones or mobile routers.

*KDDI CORPORATION
Tokyo, Japan
ai-yamada@kddi.com

Previous works studied ways to infer network status. In
[11,12], they profiled user activities or classified the traffic
on the network. In [2,3], they studied ways to detect an OS
(OS fingerprinting) by monitoring traffic on the network. For
example, OS fingerprinting is realized by using
characteristics in the TCP/IP header [2], fields in the DHCP
packets [3], and the HTTP header. Some works took another
approach to actively detect an OS by sending or injecting
configured packets to the target hosts or TCP/IP sessions
[4,6]. Another work used a hybrid approach [10] that
combined passive approaches with active ones. However,
these works are unrealistic for large, complicated networks
in terms of storage and computational cost. These works,
except for [3], force network administrators to deploy
massive additional monitors or systems on their networks
and to analyze large volumes of traffic data to profile all
activities. The works utilizing DHCP packets [3] cannot
extract additional information related to user activities. Some
works of reducing the monitoring nodes for network
management and monitoring are to adapt dynamic networks,
such as virtual networks, the Internet, or sensor networks by
selecting appropriate nodes [7,8,9]. However, these works
also have the deployment issue; these works need to improve
or replace existing network devices or nodes to add new
functions. These works also require large volumes of data,
making it difficult to extract information on network status in
terms of not only the volume of traffic but also services and
application trends. Furthermore, all previous works have
difficulty in estimating the number of devices with each OS
in the case that devices are located in the behind of NAT
(Network Address Transform) boxes or tethering devices, or
devices move across access networks by traffic off-loading
from the cellular network to fixed one via WLAN, where a
device is assigned with different IP addresses by access
networks it uses, or a device shares an IP address with other
devices.

To overcome such a difficulty, we focus on DNS traffic
as a tool to be aware of the situation on a network. Analyzing
DNS traffic results in a substantial amount of useful
information about the status of the network, such as popular
services and applications among users and daily traffic trends.
Furthermore, it allows us to presume upcoming traffic since
a user’s device first sends a query to a DNS server to resolve
the IP address of a service provider. Moreover, we argue that
we can effectively realize awareness of the network status by
simply monitoring DNS-related traffic without additional
systems or monitoring points. Then, this is a suitable and
realistic solution for large and complicated networks.

In this paper, we propose a new passive OS
fingerprinting method by analyzing DNS traffic. The method
utilizes characteristics on DNS queries: each OS has specific
queries for domains to which other OSs send no query, and
each OS has characteristics on the time interval distribution
in sending the OS-specific domain queries. The method can
estimate the number of OSs from the number of specific
DNS queries. In order to realize our method, we derive
characteristics regarding DNS traffic by analyzing DNS
queries from each OS. Our analysis shows that each OS has
two important characteristics on DNS queries described
above. We also devise a method for estimating the number of
OSs from the number of queries by utilizing the
characteristics. For the estimation, we derive an estimation
equation which utilizes the characteristics of specific DNS
queries and also considers the irregular time interval case
that some queries are sent less than regular time intervals,
and some other queries are sent more than regular time
intervals. In this paper, we provide the results of our analysis
against DNS queries from the Android OS and the
characteristics of the queries. Furthermore, this paper shows
the results of our examination on our intra-network for
estimating the number of OSs by using our estimation. Some
results show that our method is a close estimation of the
results of DHCP fingerprinting.

A. Contribution and Outline of this Paper

In this paper, we propose a new passive OS
fingerprinting method using DNS traffic. We demonstrate,
for example in the case of the Android OS, characteristics for
OS fingerprinting derived from DNS-related traffic analysis.
We derive a method for estimating the number of OSs by
using the characteristics and considering the likelihood of
irregular events: sending queries much less than the regular
time interval and sending queries much more frequently. We
demonstrate the results of our examination of the estimation
on our intra-network.

The outline of this paper is as follows. We describe the
works related to our study in Section II. We summarize our
proposal for the estimation in Section III. We introduce the
results of our DNS traffic analysis with the Android OS and
the equation for estimating the number of OS devices in
Section IV. We introduce our examination of our estimation
by using DNS traffic on our intra-network in Section V, and
conclude this paper in Section VI.

II. RELATED WORKS

There are some works of OS fingerprinting. In [2],
Zalewski uses a passive approach by monitoring differences
in the TCP/IP headers, TTL (Time To Live), and MSS
(Maximum Segment Size) to distinguish OSs. In the HTTP
headers, the User-Agent field has information about the web
browsers as well as the OSs of the users. In [5], Shah tries to
distinguish HTTP server software and the OS by using
information included in the HTTP responses. However, these
works are not feasible on large, complicated networks, since
these works need to establish traffic monitoring equipment at
all network borders and requires the filtering of usable
information from high volumes of captured traffic data.

Moreover, especially in [2], it does not work in the case of
tethering. In this case, some fields in the TCP/IP headers are
usually rewritten. In [3], Kollmann uses DHCP-related
packets for passive OS fingerprinting. He uses the time
difference between retransmission frames or DHCP fields,
such as Secs. However, there is no information about the
services or applications that users enjoy in the DHCP frames.
So, an additional system is needed to gather information
from another traffic analysis to that from DHCP frames.

There are other works of active OS fingerprinting. In [6],
Lyon uses the network scanning tool, Nmap. This tool has a
remote OS fingerprinting function. Nmap sends probe
packets to the target devices and monitors the response. The
application then determines the OS of the target from the
response packets. In [10], Gagnon takes a hybrid approach
that combines the passive approaches with active approaches
to increase the accuracy of OS fingerprinting. However, the
method does not work when the target devices are located
behind network devices, such as a firewall or NAT box. In
such cases, the application is unable to send probe packets to
the targets. Some works have been studied to overcome the
NAT-like situations. In [13], Beverly used a passive
approach to classify the traffic derived from NAT hosts with
other hosts by using a naive Bayesian classifier for the
characteristic values in the TCP/IP header fields. In [4],
Schulz enabled active OS fingerprinting in the tethering
environment by injecting ICMP (Internet Control Message
Protocol) error packets into the target client’s TCP session.
However, this approach required an additional system to
monitor all clients networking and, especially in [4], to inject
ICMP packets at the right time. Therefore, the approach is
unfeasible with large, complicated networks.

Other works were studied to profile user activities by
analyzing traffic. In [11], Xu classified Internet backbone
traffic into clusters (servers/services, heavy hitter hosts,
scans/exploits) with source/destination IP addresses. This
approach is unrealistic for large networks because of the
need to analyze the volume of traffic data to profile all
activities in terms of storage and computational cost.
Furthermore, there is a problem with the deployment of
monitors to obtain all traffic data on a large network. In [12],
Zhang tried to infer online user activities (browsing, online
game, video, etc.) by analyzing MAC-level traffic on a
wireless LAN and extracting the feature of
data/control/management frames (data rate, frame interval
time, etc.). This approach specialized in wireless LAN traffic
but had a monitor deployment issue.

III. DESCRIPTION OF PROPOSED METHOD

Figure 1 shows our assumption of the network
environment for passive OS fingerprinting. There are some
access networks (cellular, FTTH, etc.) on the whole network,
and each device can connect to any access network. There is
a (set of) DNS server on a core network. Whichever access
network a device connects to, a device sends a query to the
same DNS server. We also assume that there are some
devices that connect to an access network through another
device, such as tethering-enabled ones or NAT-boxes. This

implies that an IP address is not used only by a certain
device; it is shared by some devices.
The outline of our proposal for the estimation of the
number of OSs from DNS traffic is as follows:
1. (In the experimental environment) Gather DNS
traffic from each mobile OS device.
2. Extract characteristics from DNS traffic: queries for
a specific domain, a specific pattern of queries (time
interval between each query, query flow to
complete a name resolution tasks).
3. Make a signature from the extracted characteristics.
4. (In the service network) Gather DNS traffic and
estimate the number of OSs from the traffic data by
using the signature.

The following sections show the result of our analysis
and examination of the estimation about the Android OS as
an example of proof of our proposal. In Section IV, we
denote an example of our analysis for extracting
characteristics from DNS traffic. Section IV shows the
results with the Android OS as an example of our analysis.
Through the analysis, we found characteristics for the
estimation: (A) the Android OS has specific domain names
for which any other OSs sends no query regularly (denoted
in Section IV-A); (B) the Android OS has specific query
flows where first it sends an AAAA record query, then sends
an A record, and after receiving a response, it sends a PTR
query for one of the IP addresses in the response (denoted in
Section IV-A); and (C) the Android OS has specific patterns
of queries involved with time intervals between queries
(denoted in Section IV-B). We represent a general model of
the signature as an equation with each parameter that
represents a characteristic (time interval pattern) used for the
estimation of the number of OSs (denoted in Section IV-C).
In Section V, we show the results of our examination of the
estimation of the number of Android OS on our intra-
network.

IV. RESULT OF OUR DNS TRAFFIC ANALYSIS

To extract signatures for passive OS fingerprinting, we
capture DNS-related traffic from mobile devices with each
OS left without any operation and the captured traffic. We
use four smartphone devices, two of which have Android 2.3,
and the others have different OSs. All devices access the
Internet using wireless LAN. All devices are configured to
allow auto-update of applications and enable GPS functions
with the other configurations set to the default. All devices
have some applications installed by default. DNS-related
traffic evolved from devices is captured on the DNS server
on our intra-network.

A. OS-specific DNS query

We extract domain names for which any other OSs sends
no query. Table I shows an example of domain names for
which only the Android OS sends queries. According to
Table I, the Android OS has specific domain names for
which any other OSs send no query. Moreover, it is notable
that when the Android OS sends a query to
clients.android.google.com (or some other google.com

DNS

oS B

Capture
DNS traffic

Core
Network

®

Figure 1. Our assumption of the network environment

subdomains), the OS first sends a query for AAAA records.
Then, the OS sends a query for A records. Less than 200
milliseconds later, after a response has arrived, the Android
OS sends a query for the PTR record of an IP address, which
is in response to the A record query.

Android OS also sends queries to *poolntp.org
regularly. The domain is likely to be queried by other OSs by
setting the domain as an NTP (Network Time Protocol)
server domain. However, according to our extra examination
by other OSs (Linux OS, Windows™), the OSs send a query
only once when configuring an NTP server and send no
query whenever the OSs send NTP-related traffic. The OSs
take time intervals over one day because of TTL (Time To
Live) value of the DNS server of ntp.org domain as far as we
observed. It differs from the behavior of Android OS, which
sends queries at about 14,400 seconds interval.

B. Interval time pattern of DNS queries

We then analyze the interval time between DNS queries
for OS-specific domain. Figure 2 shows query time for
clients.android.google.com A record from the base time
when the first query (query number is 0) is evolved. Device 1
and 2 have the same Android OS version 2.3, but these are
produced by different vendors. According to Figure 2,
queries are often evolved at the same time with query
number 0 every day. Sometimes, there is no query within a
day or there are some queries at different times in a day.
Device 2 sends more queries than Device 1 in 30 days. After
sending a query, Device 2 sends a query after less than 3
seconds again. Moreover, Device 2 sometimes sends a query
again after more than an hour (3,600 seconds).

Figure 3 shows frequency distribution of queries for
clients.android.google.com. At Device 1, 21.4% of queries
take time intervals near 86,400 seconds (from 84,600 to
88,200 seconds). 42.9% of queries take intervals over one
day (more than 88,200 seconds). At Device 2, 8.7% of
queries take time intervals near 86,400 seconds (from 84,600
to 88,200 seconds). A total of 13.0% of queries take intervals
over one day. Moreover, Figure 2(b) shows specific
characteristics Device 2 only owns, 33.0% of queries take

TABLEI. EXAMPLES OF OS-SPECIFIC DNS QUERY (ANDROID

09)

domain name |clients.google.com, *.pool.ntp.org, mtalk.google.
com

interval less than 1,800 seconds (most of these queries send Through our analysis described above, we summarize

at less than 3 seconds interval) and 16.5% of queries at less characteristics on DNS queries for
than 5,400 seconds (in fact, these queries’ intervals take from clients.android.google.com as follows:
3,600 to 4,000 seconds). Device 2 also takes intervals near e After a query for the A record of

82,800 seconds (from 81,000 to 82,800 seconds) at 6.1% of
queries. This appears that if a previous query takes intervals
near 3,600 seconds, the next interval is near 82,800 seconds
in order to adjust the query time at the same time in a day.

20 4

Bt
815 - £
g =
210 | HEsE. =
N s

0 + | |
0 5 10 15 20 25 30
relative query time from query #0 [day]

(a) Device 1

60

W
(e}

~
S

(9%
(e}

[
(=)

—_
S

clients.android.google.com, the Android OS sends a
PTR query for an IP address, which is in response to
an A record query at an interval of less than 200
milliseconds.

| I ¥

0 5 10 15 20 25 30
relative query time from query #0 [day]

(b) Device 2

Figure 2. DNS query evolved time (domain name: clients.android.google.com, days: 30)

number of queries

cumulative relative
frequency

query time interval [second]

(a) Device 1

cumulative relatvie
frequency

OO OO OO0 OO OO OO OO OO0 OO O OO0 OO OO O
ooty R e R e R R R R R R e R R R R R e R e R R R R R R R R R R R R R R R R Y R R R P R R R R Rt
OO TANORXOTAOCRKXOTANOROOTAOOXXOTANOROOTANOXXOTANORXNOTAOOOTANOOOTAA
NN AOANTOORN— NN OANATOTARA—NNORXOANTNI-A—TNFTOR0OOANNNT-— Al O 0 0

v—<v—<v—<v—4v—4v—4(\l(\l(\lr\lr\lmmmmmmvvvvvmmmmmm@\O\O\O\ol\l\l\l\l\l\oooooooooo7\o|
query time interval [second]

(b) Device 2

Figure 3. Query time interval (domain name: clients.android.google.com, days: 60)

Android OS often sends queries for
clients.android.google.com at the same time every
day. However, the Android OS sometimes sends no
query in a day (42.9% of Device 1 queries, 13.0% of
Device 2 queries).

The Android OS sometimes sends queries for
clients.android.google.com at different times from
the regular time in a day. Some devices have a
specific pattern for the different time (e.g. Device 2
sends the queries at intervals near 3,600 seconds
(16.5%) or less than 3 seconds (33.0%)).

We analyze another query domain, *pool.ntp.org. Figure
4 shows query time for *poolntp.org A record from the

query number

= = NN

number of queries

number of queries

base time when the first query is evolved. In Figure 4,
vertical axes between days are drawn at 14,400 seconds.
According to Figure 5, queries are often evolved at time
intervals of multiples of 14,400 seconds (4 hours). Figure 5
shows frequency distribution of queries for *pool.ntp.org.
Most of queries are sent at the time intervals of near the
multiples of 14,400 seconds, 78.0% of Device 1 queries and
78.5% of Device 2 queries. Some queries take intervals less
than 7,200 seconds, 8.7% of Device 1 and 9.3% of Device 2.
These queries appear to be for the alignment of the timing of
sending queries. Some queries take intervals over one day,
2.9% of Device 1 queries and 2.3% of Device 2 queries.
Through our analysis described above, we summarize
characteristics of DNS queries for

54 20 -
T il
0 - St i (c//
/ éls
5 - !/o/f = /
=10
0 - / & //r
P
= 1
5 f/// &3 /
0 0
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
relative query time from query #0 [day] relative query time from query #0 [day]
(a) Device 1 (b) Device 2
Figure 4. DNS query evolved time (domain name: * pool.ntp.org, days: 7)
60 °
50 £
40 EE
30 s 35
2 £F
E‘o—t
10 s
0 |
query time interval [second]
(a) Device 1
60 w7 1
50 o+ ¢ ;‘
PP S ——— 08 &®
40 /) B*
06 5 g
30 — > =
20 F04 %S
02—5&:
2 E
10 I I E
0 1 T -\17 0
C OO OO0 OO OO OO O OO oooooOoooooooOooOD
SO0 OO OO0 OO0 OO OO OO OO O OO OO OO OO OO OO OO0 OO0 OO OO
OO TANOCRHXOTAOCOOTAOCKHOTAOSOOOTAOOOTANOXOTANOXXOTAOROOTANOOOTAA
—NNEEAOANTOORA— NNV OOATOANA—NNOXXOATVII-AN—NTO0OOANNNI-N— Al O 00 0
._4._‘._‘.—4—‘.—‘NNNNmmmmmmmvvvvvmmmmmm\oxoc\oxot\l\l\(\l\l\ooooooooooo/a
query time interval [second]

(b) Device 2

Figure 5. Query time interval (domain name: *pool.ntp.org, days: 60)

clients.android.google.com as follows:

e The Android OS often sends queries for
* pool.ntp.org at multiples of 14,400 seconds.
However, the Android OS sometimes sends queries
over a day (2.9% of Device 1 queries, 2.3% of
Device 2 queries).

e The Android OS sometimes sends queries for
* pool.ntp.org at less than 7,200 seconds (8.7% of
Device 1 queries, 9.3% of Device 2’ queries) for
perhaps timing alignments.

C. Estimating the number of OSs

To estimate the number of OSs, we consider the
characteristics described above: (A) regularly, query time
intervals have a cyclic nature, (B) irregularly, some queries
are sent less than regular time intervals, and (C) some other
queries are sent more than regular time intervals.
Furthermore, for estimating the number of OSs, we have to
consider how to estimate the number of OSs using the data
captured during the less than the regular cyclic time interval.
This means that there are some OS devices that do not send
queries during the captured time interval, and we estimate
the number of such devices by using the captured data that
includes no query sent from the devices. In this section, we
first introduce how to estimate the number of OSs using the

data captured during the less than regular cyclic time interval.

Then, we introduce how to consider the irregular
characteristics described above. For the purpose of the
following explanation, Figure 6 is an example of the
situation of the following explanations. Table II summarizes
the notations we use in the following explanations.

First, we introduce the estimation equation which
utilizing the regular cyclic nature of queries (A). Let the
cyclic interval time for a domain d be T, and the interval
time for capturing traffic data be T, (< T;). A probability
Par, that an OS device sends a query for domain d in the

capture interval T, satisfies Par, =Ty /T4. Therefore, let the

TABLE I NOTATIONS

Ty Cyclic interval time for a domain d

Interval time for capturing traffic data

Nar, The number of queries for domain d that are sent in the
interval T,

N(},T,, The number of OS devices that sends only one query for
domain d during the interval Ty,

Nf,T,, The number of OS devices that sends more than one
query for domain d during the interval T,

ug Mean of the number of queries sent by OS devices in
the interval T, that send more than one query in the
interval T,

Par, Probability that a OS device sends queries for domain d
in the interval T,

Pdr, Probability that a OS device sends queries for domain d
at less than the interval T,

Par, Probability that a OS device sends queries for domain d
over the cyclic interval Ty

Nos, The number of OS devices only that send at least one
query in the cyclic interval Ty
N5, | The number of all OS devices

number of queries for domain d in the interval T, be Nd,qu if
all queries are sent at the cyclic interval T,;, the number of
OSs 0S;, Nos,, satisfies Nyg; ‘Par, = Nd‘Tq. So, Ny, can
estimate by the following equation,

__Nar T4

=y, I 1
0S; pd,Tq d,Tq Tq ()

For example, in Figure 6, the number of queries for
domain d, Nd‘Tq, is 3 (query Qq,0, @1,1, Q12 and Q3 p). If T,
satisfies T, = 1/2-T; , the number of OS devices is
estimated that Nog, = 3/(1/2) = 6.

Then, we introduce how to consider the irregular
characteristics (B). In the queries in the captured data during
T,, there are the queries that are sent by the same OS device.
So, we should remove such duplicated queries from the
number Ngr, before the estimation of Ny, by the equation

1).

()First, we consider the irregular characteristic (B) to the
estimation equation (1). Let Né,rq be the number of OS
devices that send only one query in the capture interval T,
N;Tq be the number of OS devices that send more than one
query in the capture interval T,. Let u% be the mean of the
number of queries sent by OS devices, which send more than
one query in the capture interval T, in the capture interval Ty,.
The number of queries in the capture interval Ty, Nd_Tq, is
denoted as N7, = N(}_Tq + ;-1 erTq . N(iTq satisfies
N(f'T .= Nir 4 -p[;_Tq, where Pk.rq is the probability that an
OS device sends a query for domain d at less than the capture
interval T;. So, the number of devices that send only one
query Né,rq is denoted as Njr, = Ny7, /(1 + Pk,rq s —1)).
Therefore, the equation (1) is revised as,

a query at less than
capture interval Ty

a query over the
cyclic interval Ty

................

R [
Q:l,OQl,l Q, Qi3 Q4 i Qu5
device 1 fiitiz 't t14 tis .
T Tq Ty :
v
QZ, QZ,l QZ,Z Q2,3
device 2 tr1 ty2 ty3
Ty Ty Ty

capture interval Ty

Figure 6. An example of the estimation situation

1
Ngrg Narg

- Parq N (Tq/Td)(l‘*'pb‘Tq(,ub—l))'

2

NOSi

In Figure 6, the probability that an OS device sends a
query at less than the capture interval T, pli‘Tq, is2/6 =1/3
derived from Device 1 pattern (queries that sent at less than
the interval T, is Q1 ; and Q,). The mean of the number of
queries that is sent in the capture interval T, u}, is 3 derived
from the Device 1 pattern. So, the number of OS devices is

estimated as Nyg, = m = 18/5.

Then, we consider the irregular characteristic (C) to the
equation (2). Ny, in the equation (2) denotes the number of
OS devices that send at least one query in the cyclic time
interval T;. However, according to characteristic (C), there
are some OS devices that send no query over the cyclic time
interval. So, let png , be the probability that an OS device
sends a query over the cyclic time interval T;, and the
estimated number of all OS devices Né\si is denoted as

follows, N{}Si = Nps,/(1 — pgT)+ Therefore, the equation
(2) is revised as,
N, Ng

0S; _ d,Tq
1-pdr, Par,(1-03r,)

A _
NOSi -

TABLE III. PARAMETERS FOR THE EQUATION (3)

(A) DOMAIN: ANDROID.CLIENTS.GOOGLE.COM

Device 1 Device 2

Ty Ty PIJ,T,, pg,m ug p(]i:Tq pg.rd uh

86400 | 0.357 0.429 2.00 | 0.783 0.130 2.86

43200 | 0.262 0.429 2.00 | 0.626 0.130 234

86400 | 21600 | 0.143 0.429 2.00 | 0.539 0.130 2.05

10800 | 0.095 0.429 2.00 [0.513 0.130 2.05

5400 [0.071 0429 2.00 | 0348 0.130 2.00

(B) DOMAIN: * POOL.NTP.ORG
Device 1 Device 2

Ty Tq p!i.Tq Por, Mk pf];iqu Pir, Ms
14400 [0.104 0.549 2.00 [0.116 0.581 2.00
14400 7200 | 0.087 0.549 2.00 [0.076 0.581 2.00
3600 [0.046 0.549 2.00 [0.052 0.581 2.00

TABLE IV. VALUES OF THE NUMBER OF QUERIES IN EACH CAPTURED
TIME INTERVAL
(DOMAIN: ANDROID.CLIENTS.GOOGLE.COM)

T, 86400 43200 21600 10800 5400
Nar, 16.0 8.58 4.61 2.29 1.14

TABLE V. VALUES OF THE NUMBER OF QUERIES IN EACH CAPTURED
TIME INTERVAL
(DOMAIN: * POOL.NTP.ORG)

T, 14400 7200 3600
Nz, 1.50 0.73 0.35

— Narq
T T/T)) 4P, (G-1)A-PIr)

3)

In Figure 6, the probability that an OS device sends a
query over the cyclic time interval Ty, pQr,, is 1/6 derived
from Device 1 pattern (queries that sent over the cyclic time
interval Ty is Q15). So, the number of OS devices is

3

= 108/25.

: A —
estimated as Nog, = DA G-D)a-1/6)

V. EXAMINATION IN OUT INTRA-NETWORK

We examine our estimation equation (3) by estimating
the number of Android OSs on our intra-network. We
capture the DNS traffic data and DHCP-related traffic in our
intra-network. DHCP traffic is used for DHCP fingerprinting
[3] to compare the estimation result by using DNS traffic. In
this examination, we use two DNS queries that are for
android.clients.google.com and *pool.ntp.org. We derive
each parameter in the equation (3) from our DNS traffic
analysis described in Section III-B. Table III summarizes the
parameters for the equation (3) related to queries for
android.clients.google.com and *.pool.ntp.org, respectively.

Figure 7 shows the difference in the estimation results by
using queries for clients.android.google.com with the
captured time interval T, and parameters from device 1
analysis and device 2. We derive a number of queries, Nq 7,

in the equation (3) from the captured DNS traffic data during
one day. Each value of Ny, related to the captured time

interval T, is shown in Table IV. Each value of Nar, is

derived by calculating an average of the number of queries in
each interval where the start time is shifted hour by hour.
The dashed line in Figure 7 indicates the result of the DHCP
fingerprinting, which estimates that 8 OS devices exist in the
network. According to Figure 7, the results from the Device
2 parameters are closer to the DHCP fingerprinting result.
Therefore, Device 2 parameters are more suitable for the
characteristics of Android OS queries. Device 1 parameters
derive worse estimation results since the probability that an
OS device sends a query over the cyclic time interval pé’_ T4 18
much higher than Device 2 due to device specific
characteristics or irregularly factors. Figure 7 also indicates
the feature that the longer the captured time interval T,, the
closer the estimation results are to the DHCP fingerprinting
result.

Figure 8 shows the estimation results by using queries for
* pool.ntp.org. Each value of Nd’Tq is shown in Table V.

According to Figure 8, both estimation numbers of OS
devices are less than the DHCP fingerprinting result. It is
because some Android OS devices send no query for
* pool.ntp.org by default, and we presume that there are
some Android OS devices that are set to choose another
domain or method for time synchronization in the network.
Our extra observation shows that 2 devices of 5 devices send
no query for that domain. If we consider the rate of such
devices to the estimation, the results of the estimation
become closer to the DHCP result.

VI. CONCLUSION

In this paper, we study ways to passive OS fingerprinting
from the analysis of DNS traffic and we derive a method to
estimate the number of OSs in the network.

We first reveal characteristics to determine OSs from
DNS traffic by analyzing DNS queries from each OS. Each
0S, especially the Android OS, has useful characteristics for
the estimation, each OS has specific domains to which other
OSs send no query, and each OS has characteristic time
interval distributions in sending the OS-specific domain
queries. Our analysis also shows that the OS-specific domain
queries are sometimes sent irregular time intervals; some
queries are sent less than regular time intervals, and some
other queries are sent more than regular time intervals.

We then propose a method for estimating the number of
OSs from a number of specific DNS queries in a captured
DNS traffic data during a time interval. We derive an
equation for estimating the number of OSs, which considers
not only the cyclic nature of queries for specific domains but
also the irregular time interval cases described above.

Finally, we provide the results of our examination on our

45

—&— Device 1's parameters

N
=)

Device 2's parameters

o
W

----- DHCP fingerprinting

——

W
(=]

/

estimated number of OS devices
(3] (3]

0
15 . — T T
ol LT —

5

0 ‘ T T ‘

0 20000 40000 60000 80000
captured time interval (7))
Figure 7. Estimation results with queries for
clients.android.google.com

10

—&— Device 1's parameters —
Device 2's parameters
----- DHCP fingerprinting

estimated number of OS devices
S = N W A U N 0 O

0 2500 5000 7500 10000 12500
captured time interval (7))

15000

Figure 8. Estimation results with queries for * pool.ntp.org

intra-network. Some results show our estimation method can
result in close estimation number of OSs to the results of
DHCP fingerprinting. The result indicates that the accuracy
of our estimation method depends on the parameters for the
equation. In the case of wusing DNS queries to
clients.android.google.com, we can obtain closer estimation
number of OSs by using the parameters which are derived
from our DNS traffic analysis regarding Device 2 than ones
regarding Device 1. Furthermore, the results also reveal the
feature that the shorter the data captured time interval, the
worse the precision of the estimation. Additional methods
should be studied to raise the precision of the estimation
from captured data with shorter time intervals and to derive
the adequate parameters that correctly describe OS
characteristics.

ACKNOWLEDGMENT

We would like to thank Mr. Yamashita from KDDI R&D
Laboratories Inc. for sharing his works.

REFERENCES

[1] Ericsson, “Traffic and Market Report”, Available at
http://www.ericsson.com/res/docs/2012/traffic_and_market _report_ju
ne 2012.pdf, Jun. 2012.

[2] M. Zalewski, “pOf v3”,Available at http://lcamtuf.coredump.cx/p0£3/.

[3] E. Kollmann, “Chatter on the Wire: A look at DHCP traffic”,
Available at http://myweb.cableone.net/xnih/download/Chatter-
DHCP.pdf, 2007.

[4] S. Schulz, A. Sadeghi, M. Zhdanova, H. A. Mustafa, W. Xu and V.
Varadharajan, “Tetherway: A Framework for Tethering Camouflage”,
Proc. ACM Wireless Network Security (WISEC 2012), pp. 149-160,

2012.
[5] S. Shah, “HTTP Fingerprinting and Advanced Assessment
Techniques”, Blackhat 2003 USA, Available at

http://www .blackhat.com/presentations/bh-usa-03/bh-us-03-shah/bh-
us-03-shah.ppt, 2003.

[6] G.F.Lyon., “Remote OS Detection via TCP/IP stack fingerprinting”,
Auvailable at http://nmap.org/book/osdetect.html, 2011.

[7]1 C. Popi, O. Festor, “A Scheme for Dynamic Monitoring and Logging
of Topology Information in Wireless Mesh Networks”, Proc. IEEE
Network Operations and Management Symposium (NOMS 2008), pp.
759-762, 2008.

[8] D. Tuncer, M. Charalambides, G. Pavlou and N. Wang, “DACoRM:
A Coordinated, Decentralized and Adaptive Network Resource
Management Scheme”, Proc. IEEE Network Operations and
Management Symposium (NOMS 2011), pp. 417-425, 2011.

[91 R. G. Clegg, S. Clayman, G. Pavlou, L. Mamatas and A. Galis, “On
the selection of management/monitoring nodes in highly dynamic
networks”, IEEE Trans. on Computers, vol. 99, pp. 1-15, Mar., 2012.

[10] F. Gagnon and B. Esfandiari, “A Hybrid Approach to Operating
System Discovery Based on Diagnosis Theory”, Proc. IEEE Network
Operations and Management Symposium (NOMS 2012), pp. 860-865,
2012.

[11] K. Xui, Z. Zhang and S. Bhattacharyya, “Profiling Internet Backbone
Traffic: Behavior Models and Applications”, Proc. ACM SIGCOMM
2005, pp. 169-180, 2005.

[12] F. Zhang, W. He, X. Liu and P. G. Bridges, “Inferring Users’ Online
Activities Through Traffic Analysis”, Proc. ACM conference on
Wireless Network Security (WISEC 2011), pp. 59-70, 2011.

[13] R. Beverly, “A Robust Classifier of Passive TCP/IP Fingerprinting”,
Proc. Workshop Passive and Active Network Measurement (PAM
2004), pp. 158-167, 2004.

