
A Comprehensive Security Analysis Checksheet
for OpenFlow Networks

Yoshiaki Hori1,2, Seiichiro Mizoguchi3, Ryosuke Miyazaki2,4, Akira Yamada3,
Yaokai Feng2,4, Ayumu Kubota3, and Kouichi Sakurai2,4

1 Organization for General Education, Saga University,
1 Honjo, Saga 840-8502, Japan

2 Institute of Systems, Information Technologies and Nanotechnologies,
2-1-22 Momochihama, Sawara-ku, Fukuoka 814-0001, Japan

3 KDDI R&D Laboratories, Inc.,
2-1-15 Ohara, Fujimino, Saitama 356-8502, Japan

4 Faculty of Information Science and Electrical Engineering, Kyushu University,
744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

Abstract. Software-defined networking (SDN) enables the flexible and
dynamic configuration of a network, and OpenFlow is one practical SDN
implementation. Although it has been widely deployed in actual environ-
ments, it can cause fatal flows. In this paper, we consolidate the security
threats to OpenFlow mentioned in previous work and introduce a new
security checksheet that includes risk assessment methods. We compare
the Kreutz et al. threat vectors with the SDNSecurity.org attack list
to discover new threats. Our checksheet enables the security of a given
OpenFlow network design to be comprehensively assessed. Furthermore,
we evaluate the performance of an OpenFlow network with two attack
scenarios using the checksheet and identify critical performance degra-
dations.

Keywords: SDN, OpenFlow, System Security, Risk Assessment

1 Introduction

Software-defined networking (SDN) is an emerging networking paradigm that is a
good candidate for relieving the limitations of the current network infrastructures
[1][2]. By separating the control logic (the Control-Plane, referred to as the C-
Plane hereafter) of the network from data packet forwarding mechanisms (the
Data-Plane, referred to as the D-Plane hereafter) such as traditional routers and
switches, it enables dynamic and flexible configurations of the network in order
to properly allocate network resources.

When building a network infrastructure, considering the security of a network
for social infrastructure to reduce its security risk is mandatory. When building
a network using a SDN, the security of the SDN is one of the requirements
of its system design. An SDN tends to be more complicated than traditional
non-SDN networks because it consists of many components and their interfaces.

2 Authors Suppressed Due to Excessive Length

Therefore, building a secure SDN is a mandatory challenge for future various
network infrastructures, from a campus network to a carrier’s backbone network.
We focus on the OpenFlow [3] network, which is one implementation of an SDN.
OpenFlow has interface protocols between the C-Plane and D-Plane that are
widely used in actual network environments and will be deployed in the future.

In this paper, we deal with the threats to the OpenFlow network and their
countermeasures. We classify the security threats of the OpenFlow network and
make clear its security risks. Furthermore, we discuss a method for risk assess-
ment and countermeasures for every security risk. We devise a security check-
sheet for the security of the SDN system. We believe our SDN security checksheet
is useful for designing a secure SDN network. The contributions of this paper
are as follows:

– We classify the security threats of the OpenFlow network system by consol-
idating the Kreutz et al. threat vectors and the SDNSecurity.org attack list,
and we introduce some new significant risk items to complete our security
threat list.

– We create a security checksheet that includes practical assessment methods
for risks and their countermeasures. This security checksheet is useful for the
risk assessment of an OpenFlow network system design and its operation.

– We evaluate two DoS (Denial of Service) risk scenarios that are included our
proposed security checksheet with a given actual OpenFlow network testbed
consisting of commercial OpenFlow switches and an open source OpenFlow
controller implementation. As a result, we obtain quantitative conditions for
the risk.

2 Organizing SDN Security Threats

In 2003, the National Institute of Standards and Technology (NIST) originally
published the “Guideline on Network Security Testing” (NIST SP800-42) [4] as a
guideline for security when constructing a network. In 2008, NIST also published
the “Technical Guide to Information Security Testing and Assessment” (NIST
SP800-115) [5], updating NIST SP800-42. Although these documents mention
network security, they do not consider an OpenFlow network system. There are
some existing studies that analyze the security of SDN. For example, Shin et al.
presented an early discussion about attacks on SDN [9]. They briefly mention
the C-Plane’s resource consumption or DoS attacks, and D-Plane’s resource con-
sumption or DoS attacks. Kilöti et al. performed a security analysis of OpenFlow
using STRIDE and an attack tree approach [10]. They focused on a Data Flow
Diagram of the OpenFlow protocol, which does not include OpenFlow applica-
tions or the system environment. Hayward et al. recently presented a survey on
security in SDN [11]. They summarized several security analysis studies. How-
ever, their work focused on specific layers and interfaces and did not provide a
comprehensive security analysis. Kreutz et al. [6] and SDNSecurity.org [7] sepa-
rately summarized OpenFlow’s security threats in 2014 and 2015, respectively,

A Comprehensive Security Analysis Checksheet for OpenFlow Networks 3

but they do not provide assessment methods and countermeasures for a given
OpenFlow network. We consolidate the security threats of an OpenFlow network
system by comparing the Kreutz et al. threat vectors and the SDNSecurity.org
attack list, and we introduce some new significant risk items to create our final
security threat list.

2.1 Seven Threat Vectors of Kreutz et al.

Kreutz et al. pointed out the seven main potential threat vectors in SDN [6],
which are as follows: Threat vector 1: forged or faked traffic Threat vector
2: attacks on vulnerabilities in switches Threat vector 3: attacks on C-Plane
communications Threat vector 4: attacks on and vulnerabilities in controllers
Threat vector 5: lack of mechanisms to ensure trust between the controller and
management applications Threat vector 6: attacks on and vulnerabilities in
administrative stations Threat vector 7: lack of trusted resources for forensics
and remediation

They state that threat vectors 3, 4, and 5 are specific to SDN, as they stem
from the separation of the C-Plane and D-Plane, and the others are not specific.
In addition, they proposed nine solutions for making control platforms depend-
able and secure against their threat vectors [6]: replication, diversity, self-healing
mechanisms, dynamic device association, trust between devices and controllers,
trust between application and controller software, security domains, secure com-
ponents, and fast and reliable software update and patching. They proposed a
general design for a secure and dependable control platform. However, a detailed
assessment is required for the actual security design of a given SDN network.

2.2 SDNSecurity.org SDN Threat Analysis

The Network and System Security Laboratory of KAIST analyzed the threats to
SDN architecture and created an “attack list” for SDN [7]. They categorized the
components of an SDN by whether they reside in the Application Layer, Control
Layer, Infrastructure Layer, or the Control Channel between the Control Layer
and Infrastructure Layer. They then pointed out security threats for every SDN
component. Figure 1 shows their list of security threats. For instance, one item
on the attack list, [A-1] packet-in flooding, is a threat to network operating
systems. These details were posted on the SDNSecurity.org site in the summer
of 2015. However, this site was only partially online as of May 2016, and the
attack list is no longer available.

2.3 Reported Vulnerabilities of OpenFlow

Benton et al. provided a brief overview of the vulnerabilities present in the Open-
Flow protocol [8]. They highlighted the classes of vulnerabilities that emerge
from the separation and centralization of the protocol plane in OpenFlow net-
work designs. They discuss Man-in-the-middle Attacks, Listener Mode, Switch

4 Authors Suppressed Due to Excessive Length

Application Layer

Control Layer

Infrastructure Layer

Southbound API

Northbound API

Network OS

Control Channel

Switch Firmware

Flow Table

App App

[C-1] Flow Rule Flooding
[C-2] Firmware Abuse
[C-3] Control Message Manipulation

[B-1] Eavesdrop
[B-2] Man-in-the-Middle

[A-1] Packet-In Flooding
[A-3] Internal Storage Manipulation
[A-4] Control Message Manipulation
[A-8] System Variable Manipulation
[A-10] Network Topology Poisoning

[A-2] Service Chain Interference
[A-5] Control Message Abuse
[A-6] Northbound API Abuse
[A-7] Resource Exhaustion
[A-9] System Command Execution

[A-2][A-5]

Fig. 1. Threat analysis of SDNSecurity.org. The authors drew this figure based on [7].

Authentication, Flow Table Verification, DoS Risks, and Controller Vulnerabil-
ities. However, they discuss them only briefly. For OpenFlow network design
and operation, it is important to organize the details of the OpenFlow network
system vulnerabilities and discuss them.

3 Our Proposal

In order to improve the security of a given SDN system, it is important to prepare
a checksheet for risk assessment. Before we provide the checksheet, we list the
security threats against SDN systems.

3.1 OpenFlow Network System Security Threat List

To list the threats against SDN, we refer to the comprehensive survey by Kreutz
et al. [6] and the vulnerability list by SDNSecurity.org [7]. Table 1 lists these
threats.

The “Category” column represents the objects that would be damaged by the
threats. There are three categories: D-Plane, C-Plane, and Others. The D-Plane
includes the data path and switches, and the C-Plane includes the southbound
API (Application Programming Interface), controller itself, northbound API,
and applications. The Others category consists of the systems that operate ad-
ministrative stations, forensics, or remediation.

Next, by referring to and supplementing the vulnerability list of SDNSecu-
rity.org, we define additional SDN security threats as follows:

Switch Table Manipulation: If an SDN switch has a forwarding table, adver-
saries could try to manipulate this table to redirect traffic to invalid destina-
tions. If a controller has such a table and synchronizes the switches under the
controller, this controller can also be a target of switch table manipulation.

Firmware Manipulation: An SDN switch stores its firmware image in mem-
ory. Adversaries could try to manipulate this image in order to inject malware

A Comprehensive Security Analysis Checksheet for OpenFlow Networks 5

functions so as to start the malware at every boot instance. If this firmware is
stored in other components, such as a controller or an administrative station,
these components could also be targets.

Vulnerability Exploitation of the Switch Program: If the firmware of a
switch has a vulnerability that is not yet publicly known, a zero-day attack
against the switch is possible. Because we cannot prevent zero-day attacks
in general, we have to construct a security incident response team (CSIRT)
to monitor the vulnerability information and create an incident response
manual.

Vulnerability Exploitation of the Controller Program: This is the same
as the vulnerability of the switch program, and a CSIRT must also be orga-
nized for its response.

In addition, we assign an ID number to each threat. The “Basic Mechanism”
column shows how these threats are launched by adversaries. This information
is used for the next risk assessment step.

The first column of Table 1 shows the threat category. The second and third
columns show the threat vectors from Kreutz et al. [6] and SDNSecurity.org
[7], respectively. For the actual network design, we analyze the Kreutz et al.
threat vectors to determine finer threats and carry out a risk analysis for each
finer threat and determine its countermeasure. The SDNSecurity.org work can
also be classified into finer threats. However, we should add some switch and
controller related threats: Switch Table Manipulation, (Switch) Firmware Ma-
nipulation, Vulnerability of the Switch Firmware in the D-plane, and Controller
Vulnerability Exploitation in the C-Plane. We add these security threats in the
fourth column.

3.2 OpenFlow Network System Security Assessment Checksheet

Using our proposed table (Table 1), we created a security checksheet for the
OpenFlow network system that consists of security risk assessment items and
candidate countermeasures. This security checksheet is useful for risk analysis
during OpenFlow network system design and operation. This checksheet makes
it easy for a network designer or operator to determine risk items and coun-
termeasures for reducing related risks. Table 2 shows the proposed OpenFlow
Network System Security Checksheet.

We created the SDN security assessment checksheet (Table 2) based on the
threat list shown in Table 1. The contents of each column are explained in detail
in the following list.

ID: This column lists the sequence number.
Category: This column includes the D-Plane, C-Plane, or Others categories.
Condition: Using the basic mechanisms shown in Table 1, this column repre-

sents the condition under which the threats occur. For example, in order to
login to a switch, adversaries must be able to access its management port. If
the switch does not have such a management port or there is no path to the

6 Authors Suppressed Due to Excessive Length

Table 1. OpenFlow System Security Threats

ID Vulnerability Check Items Category Basic Attack Mechanisms Threat Vector by
Kreutz[]

Vulnerability
Genome Project by
SDNSecurity.org[]

Our
Origi-
nal

1 Forged or Fake Traffic Flows in
Data Plane

D-Plane

Adversaries send forged packets to data plane
from the outside of the SDN or from local net-
work.

Threat Vector 1:
Forged or Fake Traffic
Flows

2 Firmware Abuse Adversaries intrude control plane and login to
switches.

Threat Vector 2:
Vulnerabilities of
Forwarding Devices

C-2: Firmware
Abuse

3 Packet IN Flooding (Switch) Based on ID 1, adversaries intentionally raise
Packet IN events.

A-1:Packet IN
Flooding

4 Flow Rule Flooding Adversaries intrude control plane and issue flow
rule configurations.

C-1:Flow Rule
Flooding

5 Control Message Manipulation Adversaries intrude control plane and send fake
control messages.

C-3:Control Message
Manipulation

6 Switch Table Manipulation Adversaries login switches and manipulate its
switch table, or if controllers have switch tables,
adversaries login these controllers and manipu-
late switch table database.

X

7 Firmware Manipulation Adversaries login switches and manipulate its
firmware images, or manipulate firmware on the
management stations.

X

8 Vulnerability Exploitation of
Firmware (Switch)

Adversaries exploit unknown or known vulnera-
bilities in switch firmware.

X

9 Packet IN Flooding (Southbound)

C-Plane

Based on ID 1, adversaries try to waste band-
width between switches and controller.

Threat Vector 3:
Compromise
Southbound API

A-1:Packet IN
Flooding

10 Eavesdrop Adversaries intrude control plane and eavesdrop
messages.

B-1:Eavesdrop

11 Man-In-The-Middle Adversaries highjack southbound or northbound
to eavesdrop or manipulate messages.

B-2:Man-In-The-
Middle

12 Control Message Manipulation Adversaries intrude data plane and send forged
control messages to controllers.

Threat Vector 4:
Compromise
Controllers

A-4:Control Message
Manipulation

13 Packet IN Flooding (Controller) Based on ID 1, adversaries try to waste compu-
tational resources on controllers.

A-1:Packet IN
Flooding

14 Vulnerability Exploitation of
Firmware (Controller)

Adversaries exploit unknown or known vulnera-
bilities in controller program.

X

15 Internal Storage Manipulation Adversaries login the controller and manipulate
storage.

A-3:Internal Storage
Manipulation

16 System Variable Manipulation Adversaries login the controller and change sys-
tem variables.

A-8:System Variable
Manipulation

17 System Command Execution Adversaries login the controller and issue system
commands.

A-9:System Com-
mand Execution

18 Network Topology Poisoning Based on ID1 or just login the controller, adver-
saries manipulate topology database.

A-10:Network
Topology Poisoning

19 Service Chain Interference Adversaries exploit service chain logic to inter-
fere service chain.

Threat Vector 5:
Compromise
Northbound API and
Applications

A-2:Service Chain
Interference

20 Control Message Abuse Adversaries abuse northbound API or applica-
tion to issue invalid control messages.

A-5:Control Message
Abuse

21 Northbound API Abuse Adversaries at the application layer abuse north-
bound API to damage controllers and applica-
tions.

A-6:Northbound
API Abuse

22 Resource Exhaustion Based on ID 20-21, adversaries try to waste re-
sources for controllers and applications.

A-7:Resource Ex-
haustion

23 Vulnerabilities in Administrative
Station Others

Adversaries exploit the vulnerabilities of admin-
istrative stations to launch another attacks.

Threat Vector 6: Vul-
nerabilities in adminis-
trative stations

24 The Lack of Trusted Resources for
Forensics and Remediation

Adversaries intrude control plane and damage to
forensics system and data.

Threat Vector 7: The
lack of trusted
resources for forensics
and remediation

25 The Lack of Trusted Operations
for Forensics and Remediation

Adversaries exploit remediation logic and dam-
age to remediation process.

X

port, this threat may not occur. When the network administrator conducts
a security risk assessment, this information is useful for selecting the items
for risk analysis and countermeasures.

Risk: This column represents the damage against the system when the threat
occurs. In order to determine appropriate countermeasures, this information
is useful.

Evaluation Points: If the system design meets the attack conditions and the
risk is not ignorable, the network administrator conducts an additional eval-
uation using the points in this column. Based on the evaluation result, the
administrator can choose adequate countermeasures.

Countermeasures: This column represents the list of countermeasures, and
the network administrator can select solutions from these items. This list
should be updated periodically.

A Comprehensive Security Analysis Checksheet for OpenFlow Networks 7

Table 2. OpenFlow Network System Security Checksheet

ID Category Condition Risk Evaluation Points Countermeasures

1 D-Plane Adversaries can send packets to
data plane of switch.

Waste data plane bandwidth,
launch Packet IN flooding, then
service down.

Evaluation with packet generator. Use of IDS/IPS

2 Adversaries can access manage-
ment port of switches.

Lead to several risks. - Check user manual of switches.
- Check logging function.
- Check intrusion detection func-
tion.

- Login Password Management
- Logging
- Use syslog-based IDS

3 Adversaries can send packets to
data plane of switch.

Switch down - Evaluation with packet genera-
tor.
- Check monitoring function of ab-
normal Packet IN behavior.

Anomaly detection against
Packet IN messages

4 Adversaries can access southbound
or controller.

Switch down or flow table disrup-
tion.

- Evaluation with flow rule gener-
ator
- Check monitoring function of ab-
normal flow rule insertion
- Check authentication for flow
rule insertion

Anomaly detection against flow
rule insertion

5 Adversaries can access southbound
or controller.

Switch anomaly - Evaluation of arbitrary control
message insertion
- Check message authentication
function

Message Authentication

6 Adversaries can login switches or
controller.

Flow redirection - Check switch table integrity
check function
- Check authentication of switch
table manipulation

- Memory Protection
- Software Attestation

7 Adversaries can login switches or
firmware at the control plane.

Switch untrusted Check firmware image integrity
check function

Secure Boot

8 Adversaries can access from data
plane or control plane.

Lead to several risks. - Check firmware update function
- Check ISAC

Firmware Update

9 C-Plane Adversaries can send packets to
data plane of switch.

Waste control plane bandwidth. - Evaluation with packet generator
- Check monitoring function of ab-
normal Packet IN behavior

- Anomaly detection against
Packet IN messages at controller
- Resource monitor

10 Adversaries can access control
plane.

Disclosure of user data. Check C-Plane confidentiality C-Plane encryption

11 Adversaries can access control
plane.

Disclosure of user data or highjack
of controller.

Check authentication between
switches and controllers.

Authentication

12 Adversaries can login switches or
access southbound.

Highjack of controller. Check message authentication be-
tween switches and controllers.

Message Authentication

13 Adversaries can send packets to
data plane of switch.

Waste controller resources. - Evaluation with packet generator
- Check monitoring function of ab-
normal Packet IN behavior

- Anomaly detection against
Packet IN messages at controller
- Resource monitor

14 Adversaries can access controller. Lead to several risks. - Check firmware update function
- Check ISAC

Firmware Update

15 Adversaries can login the con-
troller.

Disclosure, manipulation, destruc-
tion of data.

Check confidentiality of data store
in controllers

- Encryption
- Access Control

16 Adversaries can login the con-
troller.

System unstable. Check integrity check function for
system variables

- Memory Protection
- Access Control
- Logging
- Secure Boot

17 Adversaries can login the con-
troller.

Lead to several risks. - Check system command log
- Check anomaly detection func-
tion

- Access Control
- Logging
- Anomaly detection

18 Adversaries can send packets to
data plane, or login switches, or lo-
gin controller.

Hide network anomaly or flow redi-
rection, denial of service.

Check network topology integrity
check function

- Topology Database Monitoring
- Access Control

19 Adversaries can access data plane,
switch, southbound or controller.

Denial of network services. - Check application behavior log-
ging function
- Check application anomaly de-
tection function

- Anomaly Detection of applica-
tion
- Access Control

20 Adversaries can access controller,
northbound, application.

Application anomaly or denial of
network services.

Check the integrity check function
of flow tables and policies.

- Anomaly Detection of applica-
tion
- Access Control

21 Adversaries can access north-
bound, application.

Block the other application’s oper-
ation.

- Check Northbound API usage
logging function
- Check anomaly detection func-
tion for Northbound API

Logging and Monitoring North-
bound API call

22 Adversaries can access controller,
northbound, application.

Application resource exhaustion. Check application resource moni-
toring function

Resource monitoring and anomaly
detection

23 Others Adversaries can access administra-
tive station.

Lead to several risks. Check the behavior logging and
monitoring function of administra-
tive stations

- Access Control
Logging
- Anomaly detection

24 Adversaries can access foren-
sicsremediation system.

Erase attack logs. Check the confidentiality and in-
tegrity of logs

- Encryption
- Access Control

25 Adversaries can access foren-
sicsremediation system, and
controller.

Drop remediation or backuped
firmware and configuration manip-
ulation.

- Check the integrity of config and
firmware image
- Check the periodic backup func-
tions

- Encryption
- Access Control
- Periodical Updates

8 Authors Suppressed Due to Excessive Length

4 Use of OpenFlow Network System Security Assessment

In this section, we evaluate two DoS risk scenarios in an actual OpenFlow net-
work test-bed with typical commercial OpenFlow switches and an open source
OpenFlow controller implementation.

4.1 Out SDN/OpenFlow Testbed and Security Assessment

We created an OpenFlow network evaluation environment using the Ryu3.24
OpenFlow controller software and Pica8 P-3297 OpenFlow switch. We evalu-
ated our OpenFlow testbed using our proposed assessment checksheet, which
gives qualitative security assessment results. However, quantitative results are
desirable for actual network operation. Therefore, we evaluated our OpenFlow
network testbed under two DoS scenarios to obtain quantitative results.

4.2 Quantitative Evaluation of DoS Scenario 1 (PACKET IN
Flooding)

In this scenario, we assume that adversaries intentionally send packets that
raise vast numbers of PACKET IN messages to the controller. This results in
PACKET IN messages flooding the controller. The evaluation of this attack can
be replaced with an evaluation of the OpenFlow controller, which does not up-
date the flow table.

Experiment Environment For the quantitative evaluation of PACKET IN
flooding, we used our testbed. Figure 2 shows the testbed environment. The
OpenFlow switch is connected to hosts A, B, and C. The Ryu OpenFlow con-
troller runs on a VM (virtual machine, consisting of four virtual core CPUs, 4
GB RAM, Ubuntu 14.04 LTS). The VM runs on the physical host machine (Intel
Core i7 860 2.8 GHz, 16 GB RAM, Ubuntu14.04 LTS).

Switch

OpenFlow controller (Ryu)

Send dummy packets

Packet_IN

Host A Host B Host C

Traffic load measurement

Load

ICMP echo/request packets
turn at the controller

Fig. 2. Environment of PACKET IN flooding experiment

A Comprehensive Security Analysis Checksheet for OpenFlow Networks 9

Experiment We used host A for sending dummy packets, and hosts B and C
for measuring the packet’s arrival rate. We used packETH for dummy packet
generation. Dummy packets were sent at predetermined intervals. When the
OpenFlow controller receives a Packet IN message, it raises a Packet OUT mes-
sage; however, it does not update the flow table of the OpenFlow switch. This
means that every time the OpenFlow switch receives a packet, a Packet IN arises
from the OpenFlow switch to the OpenFlow controller. However, in order to pre-
vent dummy packets between hosts B and C from affecting the evaluation, the
controller discards dummy packets after their Packet IN is received. Packets be-
tween hosts B and C go through the controller. By probing packets’ behavior
between hosts B and C, we can determine the controller’s load during Packet IN
flooding.

We measured the round-trip time (RTT) between hosts B and C when host
A sent dummy packets. At the same time, we calculated the packet arrival rate
of the number of ICMP echo-reply packets that successfully arrived at host C
and compared it to the number of ICMP echo-reply packets that were actually
sent from host B.

Results Figure 3 shows the results of the evaluation experiment. The RTT
between hosts B and C was measured by the ping command. Reachability rep-
resents the ICMP packet arrival rate. When the input of dummy packets is less
than or equal to 1,000 pps (packets per second), RTT shows no increase and
reachability stays at 100%. However, when the input of dummy packets is more
than 2,000 pps, RTT starts increasing, and when the input of dummy packets is
more than 6,000 pps, reachability falls below 50%. As the pps further increases,
RTT increases rapidly and reachability decreases.

 1

 10

 100

 1000

 10000

 100000

 0 5000 10000 15000 20000
 0

 20

 40

 60

 80

 100

R
TT

 [m
s]

IC
M

P
 e

ch
o

re
pl

y
ra

te
 [%

]

packet rate [pps]

RTT [ms]
ICMP echo reply rate [%]

Fig. 3. PACKET IN flooding experiment using Ryu

Discussion The result of this experiment appears to show that, at most, a
rate of Packet IN messages on the order of thousands of pps causes a serious
performance decrease in the OpenFlow controller. This seems to be a result
of the limit of the OpenFlow controller’s processing ability when running on

10 Authors Suppressed Due to Excessive Length

the host machine. The bandwidth between the switch and the controller may
also cause the performance to decrease. If the processing ability of the OpenFlow
controller is not sufficiently high, there may be a sudden decrease in performance
during DoS attacks.

4.3 Quantitative Evaluation of DoS Scenario 2 (FlowRule Flooding

In this scenario, we assume adversaries intentionally send packets that send
vast numbers of Flow Mod messages to the controller. This results in FlowRule
flooding on the controller. The evaluation of this attack can be replaced with
an evaluation of an OpenFlow controller that raises a Flow Mod for every new
packet.

Experiment Environment For the quantitative evaluation of FlowRule flood-
ing, we used the testbed. Figure 4 shows the testbed environment. Considering
that the OpenFlow system has the ability to run on various kinds of machine,
we used a different machine from the one used for the Packet IN flooding exper-
iment. This machine has a lower performance.

Here, the OpenFlow controller runs on a Raspberry Pi2 and controls an
OpenFlow switch. The switch is connected to hosts A, B, and C. We used host
A for sending dummy packets at a rate of around 4,000 pps, and hosts B and
C for measuring the packet arrival rate. Each dummy packet has a different IP
address so that the controller raises a Packet IN and a flow rule is added to the
flow table every time a dummy packet comes to the switch. This causes vast
number of flow rules to be added to the flow table of the switch, which could
result in flow table overflow. We also set some flow rules in advance on the switch
in order to enable communication between hosts B and C. A packet from host
B should to be sent toward host C, and a packet from host C should be sent
toward host B. That is, all packets between hosts B and C are dealt with within
the switch and should never raise a Packet IN message.

Switch

OpenFlow controller (Ryu)

Send dummy packets

Flow_Mod

Host A Host B Host C

Ping measurement

Load

Packet_IN
ICMP echo/request packets
turn at the switchLoad

Fig. 4. PACKET IN flooding evaluation experiment environment

Experiment In this environment, we ran the ping command to investigate the
effect of flow rule flooding. When an ICMP echo request packet from host B

A Comprehensive Security Analysis Checksheet for OpenFlow Networks 11

arrives at the switch, the switch looks up its flow table. If a flow rule stating
that a packet from host B is supposed to be sent toward host C is already on
the flow table, then an ICMP echo request packet is sent toward host C without
raising a Packet IN message. An ICMP echo reply packet from host C is sent to
host B in the same way. We sent 50 ICMP echo packets in total. Additionally,
we measured the bandwidth, one-way delay time, and packet drop rate between
hosts B and C using iperf. We used both TCP and UDP modes for measurement.
Note that the maximum UDP bandwidth is limited to 100 Mbps because of the
performance limitation of the network interface cards of hosts B and C.

Results Table 3 shows the ping evaluation result compared with the values
when the controller works as a normal repeater hub. Overall, the RTT of flow
rule flooding was higher than that of normal operation. Specifically, the mdev
(standard deviation) was higher than normal, which meant there was great vari-
ability of the RTT when flow rules flooded the switch. Reachability was lower
than the normal value, and 30% of the ICMP packets were dropped when flow
rules flooded the switch.

Table 4 shows the iperf evaluation result compared with normal operation
values. All values were worse than normal. Specifically, UDP packets dropped
by 75%.

Table 3. RTT and reachability of flow rule flooding experiment

Flow rule flooding Normal

Min 2.882 0.477
RTT[ms] Max 92.476 0.603

Average 22.409 0.547
Mdev 21.215 0.04

Reachability[%] 70 100

Table 4. iperf result of the flow rule flooding experiment

Flow rule flooding Normal

TCP Bandwidth [Mbps] 1.04 146

Bandwidth [Mbps] 24.6 101
UDP One-way delay [ms] 26.573 0.013

Reachability [%] 25 99.9

Discussion The results of this experiment appears to show that, at most, a
Flow Mod rate on the order of thousands of pps causes a serious performance
decrease in the OpenFlow switch. Vast numbers of Flow Mod messages may
consume the CPU resources of the OpenFlow switch, which may result in an
increase of the packet drop rate. We should investigate the data transfer mech-
anism during Flow Mod, and, for a secure OpenFlow system, we should design
a controller that detects abnormal numbers of Flow Mod messages.

12 Authors Suppressed Due to Excessive Length

5 Concluding Remarks

This paper addressed the security threats of OpenFlow network systems and
their countermeasures. We classified security threats of the OpenFlow network
and clarified its security risks. Furthermore, we discussed a method for the risk
assessment and countermeasures for every security risk. We devised a security
checksheet for SDN system security. We believe our SDN security checksheet is
useful for designing a secure SDN network. In addition, we reported the results
of two quantitative evaluation experiments using our OpenFlow testbed.

As future work, we will continuously revise the proposed checksheet to in-
clude new threats. In addition, we plan to create decision rules to adopt one or
more proper countermeasures for each security threat of the OpenFlow network
system.

Acknowledgement

This work was supported by JSPS KAKENHI Grant Number 16K00132.

References

1. Y. Jarraya et al.: A Survey and a Layered Taxonomy of Software-Defined Network-
ing, In IEEE Comm. Surveys & Tutorials, Vol. 16, No. 4, pp. 1955–1980 (2014)

2. D.Kreutz et al.: Software-Defined Networking: A Comprehensive Survey. Proc. of
the IEEE, Vol. 103, No. 1, pp. 14–76 (2015)

3. N.McKeown et al: OpenFlow: enabling innovation in campus networks, ACM SIG-
COMM Computer Communication Review, Vol. 38, Issue 2 (2008)

4. J. Wack, M.Tracy, M. Souppaya: Guideline on Network Security Testing, NIST
Special Publication 800-42 (2003)

5. K. Scarfone, M. Souppaya, A. Cody, A. Orebaugh: Technical Guide to Information
Security Testing and Assessment, NIST Special Publication 800-115 (2008)

6. D.Kreutz et al: Towards Secure and Dependable Software-Defined Networks, In:
ACM SIGCOMM workshop HotSDN’13, pp.55–60 (2013)

7. SDNSecurity.org: An Overview of Misuse / Attack Cases, https:

//web.archive.org/web/20150423094535/http://sdnsecurity.org/project_

SDN-Security-Vulnerbility-attack-list.html(access 2015-12-14)
8. K. Benton, L. J. Camp, C. Small: OpenFlow vulnerability assessment, In: ACM

SIGCOMM workshop HotSDN’13, pp.151–152 (2013)
9. S. Shin, G. Gu: Attacking Software-Defined Networks: A First Feasibility Study,

In: ACM SIGCOMM workshop HotSDN’13, pp.165–166 (2013)
10. R. Klöti et al.: OpenFlow: A security analysis, In: 21st IEEE Int’l Conf. on Network

Protocols (ICNP 2013), pp. 1-6 (2013)
11. S. Scott-Hayward et al.: A Survey of Security in Software Defined Networks, In:

IEEE Comm. Surveys & Tutorials, Vol. 18, No. 1, pp. 623-654 (2016)
12. Pica8 switches, Pica8, Inc. http://www.pica8.com/products/

pre-loaded-switches(access 2015-12-15)
13. PACKETH. http://packeth.sourceforge.net/packeth/Home.html(access 2015-

12-15)
14. Ryu SDN Framework. http://osrg.github.io/ryu/(access 2015-12-15)

